[Ada2015]Steven H. Adachi, Maxwell P. Henderson. “Application of Quantum Annealing to Training of Deep Neural Networks.” arXiv:1510.06356. 21 Oct 2015.
[Ahu2000]Ahuja, R. K., Orlin, J. B., and Sharma, D. “Very large-scale neighborhood search.” International Transactions in Operational Research 7 (4-5): 301-317. 2000.
[Bac2002]Fahiem Bacchus, Xinguang Chen, Peter van Beek, and Toby Walsh. “Binary vs. non-binary constraints.” Artificial Intelligence 140 (2002) 1–37. 17 January 2001.
[Bar1982]F. Barahona. “On the Computational Complexity of Ising Spin Glass Models.” J. Phys. A, 15, 3241-3253, 1982.
[Bass2020]Gideon Bass, Max Henderson, Joshua Heath, Joseph Dulny III. “Optimizing the Optimizer: Decomposition Techniques for Quantum Annealing.” Quantum Mach. Intell. 3, 10 (2021).
[Ben2017]Marcello Benedetti, John Realpe-G´omez, Rupak Biswas,and Alejandro Perdomo-Ortiz. “Quantum-assisted learning of hardware-embedded probabilistic graphical models.” arXiv:1609.02542v3 19 Oct 2017
[Ber1999]D. Bertsimas and C.-P. Teo and R. Vohra. “On dependent randomized rounding algorithms.” Oper. Res. Lett., 24(3), 105-114, May 1996. dependent randomized rounding algorithms.pdf.
[Bia2010]Zhengbing Bian, Fabian Chudak, William G. Macready, and Geordie Rose. “The Ising model: teaching an old problem new tricks.” August 30, 2010. The D-Wave website.
[Bia2014]Zhengbing Bian, Fabian Chudak, Robert Israel, Brad Lackey, William G. Macready, and Aidan Roy. “Discrete optimization using quantum annealing on sparse Ising models.” Frontiers in Physics 18 September 2014.
[Bia2016]Zhengbing Bian, Fabian Chudak, Robert Israel, Brad Lackey, William G. Macready, and Aidan Roy. “Mapping Constrained Optimization Problems to Quantum Annealing with Application to Fault Diagnosis.” Frontiers in Physics 28 July 2016.
[Bia2017]Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy, Roberto Sebastiani, and Stefano Varotti. “Solving SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary Report.” Frontiers of Combining Systems pp 153-171. Lecture Notes in Computer Science vol 10483. Springer, Cham. 29 August 2017.
[Bis2017]Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandr`a, Bryan O’Gorman, Alejandro Perdomo-Ortiz, Andre Petukhov, John Realpe-G´omez, Eleanor Rieffel, Davide Venturelli, Fedir Vasko, Zhihui Wang. “A NASA Perspective on Quantum Computing: Opportunities and Challenges” arXiv:1704.04836v1 17 Apr 2017
[Bon2007]María Luisa Bonet, Jordi Levy, and Felip Manyà. “Resolution for Max-SAT” Artificial Intelligence, Volume 171, Issues 8–9, Pages 606-618. June 2007.
[Boo2016]Kelly Boothby, Andrew D. King, and Aidan Roy. “Fast clique minor generation in Chimera qubit connectivity graphs.” Quantum Inf Process Volume 15, Issue 1, pp 495–508. January 2016.
[Bor2002]E. Boros and P. L. Hammer. “Pseudo-boolean optimization.” Discrete Appl. Math., 123, 155-225 2002.
[Boy2007]S. Boyd and A. Mutapcic. “Subgradient methods.” 2007.
[Bru1967]Stephen G. Brush. “History of the Lenz-Ising Model.” Rev. Mod. Phys. 39, 883. October 1967.
[Bru1994]Peter Brucker, Bernd Jurisch, and Bernd Sievers. “A branch and bound algorithm for the job-shop scheduling problem.” Discrete Applied Mathematics Volume 49, Issues 1–3, 30 March 1994.
[Bur2002]C.J.C. Burges. “Factoring as Optimization.” Microsoft Research TR-2002-83. 2002.
[Cai2014]Jun Cai, William G. Macready, and Aidan Roy. “A practical heuristic for finding graph minors.” arXiv. 10 Jun 2014.
[Cha2019]Nicholas Chancellor. “Domain wall encoding of discrete variables for quantum annealing and QAOA.” 12 Mar 2019. Quantum Science and Technology 4, 045004 (2019).
[Che2021]Jie Chen, Tobias Stollenwerk, and Nicholas Chancellor. “Performance of Domain-Wall Encoding for Quantum Annealing”. 24 February 2021.
[Coo1971]S. Cook. “The Complexity of Theorem-Proving Procedures.” Proceedings of 3rd annual ACM Symposium on Theory of Computing, 151-158 1971.
[Cou2009]James Coughlan. “A tutorial introduction to belief propagation.” 2009.
[Dat2014]Nikesh S. Dattani and Nathaniel Bryans. “Quantum factorization of 56153 with only 4 qubits.” 25 Nov 2014
[Dec1987]R. Dechter and J. Pearl. “The cycle-cutset method for improving search performance in AI applications.” Proceedings of the Third IEEE on Artificial Intelligence Applications, pp. 224–230. 1987.
[Dec2003]Rina Dechter. “Constraint Processing.” Morgan Kaufmann. 2003.
[Dic2013]N. G. Dickson et al. “Thermally assisted quantum annealing of a 16-qubit problem.” Nature communications. 4:1903. May 21, 2013.
[Dou2015]Adam Douglass, Andrew D. King, and Jack Raymond. “Constructing SAT Filters with a Quantum Annealer.” In: Heule M., Weaver S. (eds) Theory and Applications of Satisfiability Testing – SAT 2015. SAT 2015. Lecture Notes in Computer Science, vol 9340. Springer, Cham
[Dum2013]Vincent Dumoulin, Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio. “On the Challenges of Physical Implementations of RBMs.” arXiv:1312.5258 18 Dec 2013.
[dwave1]“Problem Formulation Guide.”
[dwave2]“Choosing good problems for quantum annealing.”
[Dwave3]Evgeny Andriyash, Zhengbing Bian, Fabian Chudak, Marshall Drew-Brook, Andrew D. King, William G. Macready, and Aidan Roy. “Boosting integer factoring performance via quantum annealing offsets.”
[Dwave4]“Programming with D-Wave: Map Coloring Problem”. D-Wave website under Resources/Publications. 2013.
[Dwave5]“Reverse Annealing for Local Refinement of Solutions.” D-Wave White Paper Series, no. 14-1018A-A. 2017.
[Dwave6]“Virtual Graphs for High-Performance Embedded Topologies.” D-Wave White Paper Series, no. 14-1020A, 2017.
[Els2017]Nada Elsokkary, Faisal Shah Khan, Davide La Torre, Travis S. Humble, and Joel Gottlieb. “Financial Portfolio Management using D-Wave’s Quantum Optimizer: The Case of Abu Dhabi Securities Exchange.”
[Flo2017]Florian Neukart, Gabriele Compostella, Christian Seidel, David von Dollen, Sheir Yarkoni, and Bob Parney. “Traffic flow optimization using a quantum annealer.” arXiv:1708.01625. 4 Aug 2017.
[Fra1989]Francesca Rossi, Charles Petrie, and Vasant Dhar. “On the Equivalence of Constraint Satisfaction Problems.” Technical Report ACTAI-222-89, MCC, Austin, TX. 1989.
[Glo1990]Glover, F. “Tabu Search: A Tutorial.” Interfaces July/August 1990 20:74-94.
[Glo2017]Fred Glover, Mark Lewis, and Gary Kochenberger. “Logical and Inequality Implications for Reducing the Size and Complexity of Quadratic Unconstrained Binary Optimization Problems.” arXiv:1705.09545.
[Gra2021]Erica Grant, Travis S. Humble, and Benjamin Stump “Benchmarking Quantum Annealing Controls with Portfolio Optimization” Phys. Rev. Applied 15, 014012 – Published 8 January 2021
[Har2010]R. Harris et al. “Experimental demonstration of a robust and scalable flux qubit.” Phys. Rev. B 81. 13 Apr. 2010.
[Hin2012]Geoffrey E. Hinton. “A Practical Guide to Training Restricted Boltzmann Machines.” Pages 599–619, Springer, Berlin, Heidelberg . 2012.
[Ike2019]Ikeda, K., Nakamura, Y. & Humble, T.S. “Application of Quantum Annealing to Nurse Scheduling Problem.” Sci Rep 9, 12837 (2019).
[Ish2011]Hiroshi Ishikawa. “Transformation of General Binary MRF Minimization to the First-Order Case.” IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL. 33, NO. 6. June 2011.
[Joh2007]J. K. Johnson, D. M. Malioutov, and A. S. Willsky. “Lagrangian relaxation for MAP estimation in graphical models.” Proceedings of The 45th Allerton Conference on Communication, Control and Computing. Sept. 2007.
[Jor2011]Stephen Jordan. “Quantum Algorithm Zoo.”
[Jue2016]Juexiao Su, Tianheng Tu, and Lei He. “A quantum annealing approach for Boolean Satisfiability problem.” Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE.
[Kin2014]A. D. King and C. C. McGeoch. “Algorithm engineering for a quantum annealing platform.” arXiv preprint arXiv:1410.2628 (2014).
[Kin2016]A. D. King et al. “Degeneracy, degree, and heavy tails in quantum annealing.” Physical Review A 93.5 (2016): 052320.
[Koc2004]G. Kochenberger et al. “A unified modeling and solution framework for combinatorial optimization problems.” OR Spectrum 26 (2004), pp. 237–250.
[Kol2004]V. Kolmogorov and R. Zabih. “What energy functions can be minimized via graph cuts?” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 65-81. 2004.
[Kor2016]Dmytro Korenkevych, Yanbo Xue, Zhengbing Bian, Fabian Chudak, William G. Macready, Jason Rolfe, and Evgeny Andriyash. “Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines.” arXiv:1611.04528. 14 Nov 2016.
[Kur2020]Kurowski K., Weglarz J., Subocz M., Rozycki R., Waligora G. (2020) “Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling “Problem. Krzhizhanovskaya V. et al. (eds) Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol 12142. Springer, Cham.
[Lan2017]Trevor Lanting, Andrew D. King, Bram Evert, Emile Hoskinson. “Experimental demonstration of perturbative anticrossing mitigation using non-uniform driver Hamiltonians.” Phys. Rev. A 96, 042322 (2017)
[Lec2006]Yann LeCun. “Predicting structured outputs.” A Tutorial on Energy-Based Learning, MIT Press. 2006.
[Lev1973]Leonid Levin. “Universal search problems” 1973. Translated into English by B. A. Trakhtenbrot “A survey of Russian approaches to perebor (brute-force searches) algorithms.” Annals of the History of Computing 6(4),384-400. 1984.
[Liu2005]W. Liu et al. “A hybrid multi-exchange local search for unconstrained binary quadratic program.” University of Mississippi, Hearin Center for Enterprise Science,HCES-09-05. 2005.
[Luc2013]Andrew Lucas. “Ising formulations of many NP problems.” arXiv:1302.5843. 23 Feb 2013.
[Mac2018]Maciej Koch-Janusz and Zohar Ringel. “Mutual Information, Neural Networks and the Renormalization Group.” 24 Sep 2018.
[Mar2007]R. Marinescu and R. Dechter. “Best-first AND/OR search for 0-1 integer linear programming.” Proceedings of the 4th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR). 2007.
[Mug2020]Samuel Mugel, Carlos Kuchkovsky, Escolastico Sanchez, Samuel Fernandez-Lorenzo, Jorge Luis-Hita, Enrique Lizaso, Roman Orus “Dynamic Portfolio Optimization with Real Datasets Using Quantum Processors and Quantum-Inspired Tensor Networks” arXiv:2007.00017
[Nev2012]Neven, H., Denchev, V. S., Rose, G., and Macready, W. G. “QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization.” Journal of Machine Learning Research: Workshop and Conference Proceedings, 2012.
[Oru2019]Orus, Roman & Mugel, Samuel & Lizaso, Enrique. (2019). “Forecasting financial crashes with quantum computing.” Physical Review A. 99. 10.1103/PhysRevA.99.060301
[Pap1976]Spiros Papaioannou. “Optimal Test Generation in Combinational Networks by Pseudo-Boolean Programming.” IEEE Transactions on Computers > Volume: C-26 Issue: 6. 24 May 1976.
[Pea2008]J. Pearl. “Probabilistic Reasoning in Intelligent Systems.” 2nd ed. San Francisco, CA: Kaufmann, 1988.
[Per2015]A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, and V. N. Smelyanskiy “A quantum annealing approach for fault detection and diagnosis of graph-based systems” European Physical Journal Special Topics, vol. 224, Feb. 2015.
[Per2012]Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose, and Alán Aspuru-Guzik. “Finding low-energy conformations of lattice protein models by quantum annealing.” Scientific Reports 2, Article number: 571. 2012.
[Pud2014]K. L. Pudenz et al. “Error-corrected quantum annealing with hundreds of qubits.” Nature communications 5 (2014).
[Pud2015]K. L. Pudenz et al. “Quantum annealing correction for random Ising problems.” Physical Review A 91.4 (2015): 042302.
[Ret2017]Jacob Retallick, Michael Babcock, Miguel Aroca-Ouellette, Shane McNamara, Steve Wilton, Aidan, Mark Johnson, and Konrad Walus. “Algorithms for Embedding Quantum-Dot Cellular Automata Networks onto a Quantum Annealing Processor.” 14 September 2017. arXiv:1709.04972
[Rie2014]Eleanor G. Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B. Do, Elicia Prystay, and Vadim N. Smelyanskiy. “A case study in programming a quantum annealer for hard operational planning problems.” arXiv:1407.2887 [quant-ph] 10 Jul 2014
[Rol2016]Jason Tyler Rolfe. “Discrete Variational Autoencoders.” arXiv:1609.02200. 7 Sep 2016.
[Ros2016]G. Rosenberg et al. “Building an iterative heuristic solver for a quantum annealer.” Computational Optimization and Applications. Springer (2016), pp. 1-25.
[Ros2016a]Gili Rosenberg, Poya Haghnegahdar, Phil Goddard, Peter Carr, Kesheng Wu, and Marcos López de Prado. “Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer.” arXiv:1508.06182v3. 11 Aug 2016.
[Sal2007]Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. “Restricted Boltzmann Machines for Collaborative Filtering.” The International Machine Learning Society. 2007.
[Sch2009]Nicol N. Schraudolph and Dmitry Kamenetsky. “Efficient exact inference in planar Ising models.” Advances in Neural Information Processing Systems 21, MIT Press. 2009.
[Tan2015]Richard Tanburn, Emile Okada, and Nike Dattani. “Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The “deduc-reduc” method and its application to quantum factorization of numbers.” arXiv:1508.04816 19 Aug 2015
[Tin2018]Ting-Jui Hsu, Fengping Jin, Christian Seidel, Florian Neukart, Hans De Raedt, Kristel Michielsen. “Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes.” 2018.
[Ush2017]Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and Susan M. Mniszewski. “Graph Partitioning using Quantum Annealing on the D-Wave System.” arXiv:1705.03082. 4 May 2017.
[Vah2017]Arash Vahdat. “Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks.” arXiv:1706.00038. 27 May 2017.
[Ven2015]Davide Venturelli, Dominic J.J. Marchand, and Galo Roj. “Job Shop Scheduling Solver based on Quantum Annealing.” arXiv:1506.08479 29 Jun 2015
[Ven2015b]Davide Venturelli, Salvatore Mandrà, Sergey Knysh, Bryan O’Gorman, Rupak Biswas, and Vadim Smelyanskiy. “Quantum Optimization of Fully Connected Spin Glasses”. Phys. Rev. X. 18 September 2015.
[Vin2019]Walter Vinci, Lorenzo Buffoni, Hossein Sadeghi, Amir Khoshaman, Evgeny Andriyash, Mohammad H. Amin. “A Path Towards Quantum Advantage in Training Deep Generative Models with Quantum Annealers.” 4 Dec 2019
[Wea2014]S. A. Weaver, K. J. Ray, V. W. Marek, A. J. Mayer, and A. K. Walker. “Satisfiability based set membership filters.” Journal on Satisfiability, Boolean Modeling and Computation 8, 129 (2014).
[Wil2019]D. Willsch, M. Willsch, H. De Raedt et al., “Support vector machines on the D-Wave quantum annealer.” Computer Physics Communications (2019) 107006.